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Abstract: This mixed-methods study examines whether backpropagation-based deep learning
(DL) visualizations can strengthen metacognition and learning outcomes in a university Linear
Programming course. Sixty undergraduates (8-week blended format) completed pre/post
cognitive tests and the Metacognitive Awareness Inventory (MAI), while their LMS activity
traces (e.g., time-on-task, revision frequency, error types) trained a multilayer perceptron. The
intervention exposed students to DL visual artifacts—Iloss curves, gradient/weight updates,
and error heatmaps—as reflective scaffolds linking machine error correction to human self-
regulation. Quantitatively, mean test scores increased from 61.23 to 80.57 (paired-t, p <.001),
and total MAI rose from 135.40 to 159.85 (paired-t, p <.001). Gains concentrated in regulation
of cognition (monitoring/evaluation). Metacognitive improvement correlated with
achievement (Pearson r = .62, p < .001). Computationally, model loss decreased from 0.25 to
0.03 over 200 epochs with 89.4% validation accuracy; Dynamic Time Warping = 0.81 (p <
.01) indicated strong temporal alignment between DL loss minimization and students’ learning
curves. Qualitatively, thematic analysis of weekly reflections and interviews revealed a
progression from error recognition to strategy adjustment and reflective transformation,
recasting errors as actionable signals. Triangulating quantitative, computational, and
qualitative strands supports the Cognitive Backpropagation Learning (CBL) framework: DL
error feedback parallels human metacognitive feedback, and its visualization functions as a
digital mirror that externalizes reflection. Findings recommend interpretable DL dashboards
as practical, class-deployable scaffolds to cultivate reflective, adaptive mathematical thinkers.

Keywords: Deep learning visualization; backpropagation; metacognition; self-regulated
learning; learning analytics; linear programming

Abstrak: Studi metode campuran ini mengkaji apakah visualisasi pembelajaran mendalam
(DL) berbasis backpropagation dapat memperkuat metakognisi dan hasil pembelajaran dalam
mata kuliah Pemrograman Linear universitas. Enam puluh mahasiswa S1 (format campuran 8
minggu) menyelesaikan tes kognitif pra/pasca dan Inventarisasi Kesadaran Metakognitif
(MAL), sementara jejak aktivitas LMS mereka (misalnya, waktu pengerjaan tugas, frekuensi
revisi, jenis kesalahan) melatih persepsi berlapis. Intervensi ini memaparkan mahasiswa pada
artefak visual DL—Kkurva kerugian, pembaruan gradien/bobot, dan peta panas kesalahan—
sebagai perancah reflektif yang menghubungkan koreksi kesalahan mesin dengan regulasi diri
manusia. Secara kuantitatif, skor tes rata-rata meningkat dari 61,23 menjadi 80,57 (paired-t, p
<.001), dan total MAI meningkat dari 135,40 menjadi 159,85 (paired-t, p <.001). Keuntungan
terkonsentrasi pada regulasi kognisi (monitoring/evaluasi). Peningkatan metakognitif
berkorelasi dengan prestasi (Pearson r = .62, p <.001). Secara komputasional, kerugian model
menurun dari 0,25 menjadi 0,03 selama 200 epoch dengan akurasi validasi 89,4%; Dynamic
Time Warping = 0,81 (p < .01) menunjukkan keselarasan temporal yang kuat antara
minimisasi kerugian DL dan kurva belajar siswa. Secara kualitatif, analisis tematik dari
refleksi dan wawancara mingguan mengungkapkan perkembangan dari pengenalan kesalahan
menuju penyesuaian strategi dan transformasi reflektif, yang menyusun kembali kesalahan
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sebagai sinyal yang dapat ditindaklanjuti. Triangulasi untaian kuantitatif, komputasional, dan
kualitatif mendukung kerangka kerja Cognitive Backpropagation Learning (CBL): umpan
balik kesalahan DL sejajar dengan umpan balik metakognitif manusia, dan visualisasinya
berfungsi  sebagai cermin digital yang mengeksternalisasi  refleksi. Temuan
merekomendasikan dasbor DL yang dapat ditafsirkan sebagai perancah praktis yang dapat
diterapkan di kelas untuk menumbuhkan pemikir matematika yang reflektif dan adaptif.

Kata Kunci: Visualisasi pembelajaran mendalam; backpropagation; metakognisi;
pembelajaran yang diatur sendiri; analitik pembelajaran; pemrograman linier

INTRODUCTION

The digital transformation of higher education has accelerated the integration of
artificial intelligence (Al) particularly deep learning (DL) into instructional design and
assessment. In mathematics education, the principal challenge extends beyond
procedural mastery to metacognitive competence: monitoring one’s understanding,
evaluating errors, and adaptively revising problem-solving strategies. Interventions
that foreground comprehension monitoring, error evaluation, and strategy adaptation
can improve achievement and the quality of students’ learning decisions; however,
their benefits hinge on high-quality instructional design and sustained collaboration
among instructors, students, and technologies (An et al., 2020; Gutierrez de Blume,
2022; Nazaretsky et al., 2022; Xu et al., 2025). Recent work in Artificial Intelligence
in Education (AIED) and learning analytics likewise shows that Al-based
interventions can enhance learning outcomes and decision-making, provided that
pedagogical design and alignment with authentic learning processes are treated as non-
negotiable prerequisites (Wang et al., 2024).

Algorithmically, backpropagation is the core DL mechanism for error-driven
learning: discrepancies between model outputs and targets are propagated backward
through the network to update weights via gradient descent (the chain rule of calculus).
This mechanism enables neural networks to acquire increasingly abstract, task-
relevant hierarchical representations. Formal explanations and best practices are well
documented in the seminal literature (Rumelhart et al., 1986) and standard DL
monographs. On the human side, metacognition “thinking about one’s thinking” is
foundational to success in learning mathematics. The Metacognitive Awareness
Inventory (MAI) operationalizes two domains, knowledge of cognition and regulation
of cognition, and shows stable factor structure for assessing adults’ metacognitive
awareness (Cogliano et al., 2021; Lavi et al., 2019). Complementing this, the self-
regulated learning (SRL) framework emphasizes the forethought—performance—self-
reflection cycle—goal setting, strategic monitoring, and evaluation with adjustment—
well aligned with mathematicians’ recurring need to manage conceptual and
procedural difficulties (Kumah, 2023; Lavi et al., 2019; Schraw & Dennison, 1994;
Siqueira et al., 2020; Williams et al., 2022).

Cognitive neuroscience indicates that human error processing is supported by
neural signals such as error-related negativity (ERN), linked to reinforcement learning
mechanisms and dopaminergic modulation (Iftanti et al., 2021; Luo, 2024; Mathaba &
Bayaga, 2021). Conceptually, this provides a bridge between error feedback in
artificial neural networks and error monitoring in the human brain—»both facilitating
strategic adaptation following mistakes. Yet this theoretical bridge is rarely translated
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into explicit pedagogical artefacts that scaffold student reflection in university-level
mathematics (Cogliano et al., 2021; Hammaoda, 2025; Holroyd & Coles, 2002).

Over recent decades, learning analytics dashboards (LADs) have been used to
visualize progress, provide formative feedback, and promote SRL practices
(Anthonysamy, 2021; Wangid et al., 2020). Systematic reviews highlight a shift from
analytics-centric to pedagogy-centric, learner-centered designs, while underscoring
the need for design principles that explicitly connect visualizations to meaningful
cognitive processes. In DL, advances in interpretability (e.g., feature visualization and
attribution) promise to “open” the black box so that representational learning—
including traces of error correction—becomes intelligible to humans. Nevertheless,
the use of DL visualizations as metacognitive scaffolds for mathematics students
remains under-explored empirically (Paulsen & Lindsay, 2024). There is a pressing
need for replicable classroom interventions that leverage learning analytics to provide
not only scores/rankings but also visual narratives of how “errors are corrected” over
time—by the model and by students themselves (Pan et al., 2024).

Guided by this background, the present study addresses three research questions.
First, to what extent can personalized backpropagation visualizations grounded in
students’ own error data enhance key metacognitive indicators—monitoring, control,
and reflection—in learning mathematics? This rests on the premise that when learners
can see visual representations of errors and corrections, they become more aware of
their thinking and better able to self-regulate strategy use. Second, what is the
relationship between DL loss minimization dynamics and students’ mathematics
learning curves (changes in accuracy, response time, and error types) over the course
of the intervention? We anticipate parallel patterns between machine error correction
and human metacognitive reflection in grasping mathematical concepts. Third, how
do students perceive the usefulness and comprehensibility of these visualizations as
reflective scaffolds, and which factors moderate their benefits (e.g., prior ability,
cognitive load, or learning styles)?

Overall, this article seeks to bridge Al theory and human cognitive theory by
introducing pedagogically meaningful visual artefacts. Under this approach, learning
mathematics is framed not only as arriving at correct answers but as learning by
reflection, supported by DL’s error-driven mechanisms. We aim to contribute to the
AIED and mathematics education literatures while offering a practical, interpretable
DL-based model that instructors and learning designers can deploy to cultivate
reflective, adaptive, and self-aware mathematical thinkers.

Literature Review and Theoretical Framework
Backpropagation and the Interpretability of Deep Learning

The concept of deep learning (DL) originates from artificial neural networks
(ANNSs), which aim to emulate the fundamental mechanisms of human learning
through layered, adaptive processing. The core algorithm enabling DL’s learning
capability is backpropagation, which was popularized by Rumelhart, Hinton, and
Williams (Rumelhart et al., 1986). In this mechanism, the output error—defined as the
difference between the model’s prediction and the actual target—is propagated
backward through the network layers to iteratively adjust connection weights using
gradient descent. Mathematically, backpropagation mirrors the principle of error-
driven learning, a process also observed in biological neural systems, particularly in
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synaptic plasticity and reinforcement learning mechanisms within the prefrontal cortex
(Saleem et al., 2022). This iterative correction process enables the system to
progressively minimize the loss function, thereby optimizing performance over time.

DL’s capacity to recognize complex patterns and generalize across large datasets
has made it a powerful analytical tool across domains, including education. However,
it has often been criticized for its lack of transparency—the so-called “black box”
problem. Consequently, the field of interpretability and neural network visualization
has become critical for understanding how models perform error correction and
construct conceptual representations. Techniques such as gradient visualization,
activation mapping, and feature visualization allow researchers and educators to
observe the “thinking pathway” of the network—how its internal weights evolve as it
learns from mistakes.

In a pedagogical context, these visual techniques offer a unique potential to
parallel human cognitive reflection—illustrating how individuals detect, analyze, and
correct their own errors throughout the learning process. Thus, backpropagation
transcends its role as a mere computational algorithm; it serves as a conceptual
metaphor for explaining the dynamics of self-correction and adaptive reasoning in
human learning, particularly in mathematics education, which demands logical
precision and strong error awareness.

Metacognition and Self-Regulated Learning in Mathematics Education

In educational psychology, metacognition is commonly defined as an
individual’s ability to be aware of, monitor, and control their own cognitive processes
(Flavell, 1979). Broadly, metacognition comprises two interrelated dimensions:
knowledge of cognition—awareness of how one learns—and regulation of
cognition—the ability to plan, monitor, and evaluate one’s learning process.

Within mathematics education, metacognition plays a central role in shaping
effective problem-solving behavior. Students with higher levels of metacognitive
awareness are typically able to recognize errors in their reasoning, select alternative
strategies, reflect on their thought processes, and adapt their approaches to different
problem types. This relationship aligns closely with (Zimmerman, 2002) theory of
Self-Regulated Learning (SRL), which posits that successful learners move through
three cyclical phases: forethought (planning and goal setting), performance
(implementation and strategy monitoring), and self-reflection (evaluation and self-
correction).

These three phases form a cognitive feedback loop that can be conceptually
paralleled with the backpropagation mechanism in deep learning. In both systems—
human and artificial—error feedback serves as an adaptive signal for learning. When
a student fails to solve a mathematical problem, reflection upon that failure provides
cognitive feedback that triggers a revision of strategies and a restructuring of
understanding—just as neural network weights are updated based on an error signal to
minimize loss.

Recent empirical studies further substantiate the link between metacognition and
academic achievement. Systematic reviews have shown that Al-powered learning
analytics can support the development of students’ metacognitive competencies by
providing transparent feedback and metacognitive dashboards that make learning
progress visible (Pacheco et al., 2025). Similarly, demonstrate how visual explanations
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and learner-controlled interfaces can be operationalized in e-learning environments to
promote deeper reflection and self-regulation (Ooge et al., 2025).

The visibility of internal computational processes—through visualizations such
as weight maps, gradient plots, and loss curves—enables both researchers and learners
to observe the “thinking path” of neural networks, revealing how weights evolve after
errors are detected. These techniques are foundational to the field of Explainable Al
(XALl), which seeks to make DL models more transparent and interpretable to humans.
Pedagogically, such visualizations offer promising potential for mirroring human
cognitive reflection, allowing learners to externalize their mental processes—seeing,
evaluating, and correcting their mistakes in parallel with how intelligent systems
optimize through feedback (Alfredo et al., 2024).

Thus, the principle of backpropagation in deep learning extends beyond
computation—it can serve as a conceptual and pedagogical metaphor for human
learning itself. It illustrates how self-correction and adaptive reasoning operate through
feedback-driven refinement. Particularly in mathematics education, where logical
precision, error awareness, and adaptive thinking are critical, this analogy provides a
meaningful theoretical bridge between the mechanics of artificial intelligence and the
cognitive dynamics of human reasoning.

Integration of Computational and Cognitive Analytics: The Cognitive
Backpropagation Learning (CBL) Framework

To bridge the theoretical divide between artificial intelligence (Al) and cognitive
learning theory, this study introduces a conceptual model termed Cognitive
Backpropagation Learning (CBL). The framework is grounded in the structural and
functional analogy between the learning mechanisms of deep learning (DL) systems
and the dynamic processes of human cognitive development. CBL conceptualizes
backpropagation—the iterative process of error correction and weight adjustment in
neural networks—as a computational metaphor for metacognitive reflection and
adaptive reasoning in human learning. Through this lens, deep learning serves not
merely as a technological model but as a cognitive-analytical framework that
illustrates how both machines and humans learn from error, refine internal
representations, and achieve higher-order understanding through feedback-driven
adaptation. This framework integrates three interdependent dimensions:

1. Computational dimension — visualizing how the DL model minimizes errors
through feedback propagation and parameter optimization.

2. Cognitive dimension — mapping these dynamics onto human reflective processes,
including error recognition, monitoring, and regulation.

3. Pedagogical dimension — using DL visualizations as reflective scaffolds to help
students externalize, analyze, and refine their thinking strategies.

The Cognitive Backpropagation Learning (CBL) model thus unifies algorithmic
and psychological perspectives on learning, positioning Al not merely as a
computational tool but as a mirror of human cognition that can make reflection visible,
measurable, and pedagogically actionable.
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Table 1. Structural Analogy between Backpropagation and Human Cognitive

Processes
Aspect Backpropagation in  Human Cognitive Interpretive Description
Deep Learning Process
Basic Unit Artificial neuron (node) Conceptual unit/neural Both serve as fundamental
schema representational units for
information processing.
Input Numerical data/feature Conceptual knowledge/ Learning begins  from

Representation

vectors

prior experience

structured or unstructured
input that shapes internal
representations.

Learning Error feedback Reflective feedback Error  signals  trigger
Mechanism propagated backward used to correct updates in both systems,
to adjust weights misconceptions and promoting more accurate
revise thinking internal models.
strategies
Optimization Minimize the loss Maximize conceptual Both systems aim for
Goal function understanding and convergence toward more
accuracy optimal representations of
knowledge.
Adaptation Gradient descent to Iterative self-regulation Learning occurs through
Process iteratively improve through reflection and cycles of feedback,
model parameters strategy refinement correction, and adaptation.
Outcome Optimized network Refined cognitive Both result in more
Representation capable of accurate schema enabling efficient and generalized
prediction adaptive problem- performance through
solving learning from error.

The CBL framework reimagines learning as a bi-directional exchange between
machine-based and human-based feedback systems. Backpropagation, as a
computational mechanism of error correction, mirrors the self-regulatory and
reflective mechanisms observed in human cognition. When represented visually—
through loss curves, weight maps, or gradient flows—these dynamics become
powerful pedagogical artifacts that externalize the abstract process of reflection and
make it observable for learners.

In mathematics education, particularly in subjects like Linear Programming, this
framework enables students to see how both artificial and human learning systems
refine understanding through iterative correction. Such visualization promotes error
awareness, encourages adaptive strategy use, and supports the formation of
metacognitive habits essential for higher-order mathematical reasoning.

Through this integration of computational analytics and cognitive reflection,
Cognitive Backpropagation Learning (CBL) establishes a theoretical and empirical
foundation for designing Al-supported reflective learning environments—where
feedback is not only computationally optimized but also cognitively meaningful.

Research Method
Research Design

This study employed a mixed-method approach with a sequential explanatory
design, consisting of an initial quantitative phase followed by qualitative exploration
and computational analysis. The quantitative data were used to identify the extent of
change in learning outcomes and metacognitive awareness, while the qualitative and
computational phases provided deeper insights into the reflective and adaptive
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processes underlying these changes. This approach was selected to address two
complementary dimensions of inquiry: (1) Human—empirical dimension — to examine
how students reflect upon their errors and adjust their cognitive strategies while
solving Linear Programming problems, and (2) Computational dimension — to model
students’ error patterns using a deep learning algorithm based on backpropagation, and
to visualize the error correction dynamics that occur during learning.

These two dimensions were integrated analytically by comparing the loss
function curve of the neural network model with the learning curve of students across
the intervention. This comparative framework allowed the researchers to map
analogical relationships between the machine learning process (i.e., optimization
through backpropagation) and the human cognitive learning process (i.e., reflection
and self-regulation) within the context of mathematics education. In this way, the study
not only investigates the empirical effectiveness of Al-based visualization for
enhancing metacognition but also explores the conceptual alignment between
computational error correction and human reflective adaptation.

Participants and Research Setting

The participants of this study were undergraduate students enrolled in the
Mathematics Education Program at Universitas Negeri Makassar, Indonesia (n = 60),
aged between 18 and 21 years, who were taking the Linear Programming course at the
time of the study. The sample was selected using a purposive sampling technique based
on specific inclusion criteria. Participants were required to have:

1. Completed prior coursework in Basic Mathematics and Linear Algebra,

2. Demonstrated basic proficiency in mathematical software such as GeoGebra,
Excel Solver, or introductory Python programming, and

3. Expressed willingness to participate fully in all research activities conducted in
both online and offline formats.

The study was conducted over a period of eight weeks using a blended learning
format that combined online and face-to-face instruction. The four online sessions
were delivered through a Learning Management System (LMS) and focused on
modeling real-world Linear Programming cases, while the four in-person sessions
emphasized deep learning visualization exercises and guided cognitive reflection
activities. This hybrid arrangement was designed to provide students with both
independent digital exploration and interactive reflective discussion, allowing for the
integration of computational modeling with metacognitive awareness practices
throughout the learning cycle.

Research Instruments

This study employed three primary instruments: a cognitive test, a metacognitive
inventory, and a computational model.

Cognitive Instrument

The cognitive instrument consisted of a learning achievement test developed
based on the core competencies of the Linear Programming course. The test assessed
four key aspects: (1) conceptual understanding of objective functions and constraints,
(2) ability to formulate mathematical models from contextual problems, (3)
competence in graphically representing feasible regions, and (4) application of the
simplex or graphical method to determine optimal solutions. The test included 10 essay
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questions and 10 multiple-choice items. Content validity was established through
expert review by three lecturers specializing in applied mathematics, and internal
reliability was confirmed using Cronbach’s Alpha (o > 0.80), indicating high
consistency.

Metacognitive Instrument

The metacognitive instrument was an adapted version of the Metacognitive
Awareness Inventory (MAI). It measures two major domains: (1) Knowledge of
cognition, referring to awareness of one’s own learning strategies and cognitive
processes, (2) Regulation of cognition, encompassing planning, monitoring, and
evaluating one’s thinking processes. The adapted instrument consisted of 52 Likert-
scale items (1-5) contextualized for learning Linear Programming. Results from
Confirmatory Factor Analysis (CFA) indicated strong construct validity (y*/df < 3; CFI
> 0.90) and high internal reliability (o = 0.86). (3) Computational Instrument
The computational instrument was developed using Python (TensorFlow) and
implemented through a Multilayer Perceptron (MLP) architecture to analyze students’
error patterns in constructing Linear Programming models.

The model employed ReLU activation in the hidden layers, a Sigmoid function
in the output layer, the Adam optimizer (learning rate = 0.001), and Mean Squared
Error (MSE) as the loss function. The simulation results were visualized through: (1)
Loss convergence curves, showing the decrease in prediction error across training
epochs; (2) Weight adjustment maps, illustrating the evolution of network parameters;
and (3) Error heatmaps, depicting the distribution and intensity of individual students’
errors.

These visualizations were subsequently used as metacognitive reflection tools,
enabling students to observe how both Al models and human learners learn from errors
through iterative correction. The computational model thus served a dual function:
analytical—by modeling cognitive patterns of error—and pedagogical—by providing
visual feedback that fosters metacognitive awareness and reflective learning behavior.

Data Analysis Techniques

Data analysis in this study employed three complementary approaches
quantitative statistical analysis, computational analysis, and qualitative analysis. These
approaches were integrated to obtain a comprehensive understanding of how deep
learning—based visualization interventions influence students’ learning outcomes,
metacognitive awareness, and reflective dynamics in Linear Programming learning.

Quantitative Statistical Analysis

The quantitative analysis aimed to measure changes in learning outcomes and
metacognitive awareness before and after the intervention. A paired-sample t-test was
conducted to examine the significance of differences between pretest and posttest
scores for both the Learning Achievement Test and the Metacognitive Awareness
Inventory (MAI). Subsequently, a Pearson correlation analysis was used to explore the
relationship between improvements in MAI scores and gains in learning performance,
providing insight into how metacognitive growth contributes to academic
achievement. In addition, a multiple linear regression analysis was applied to identify
which metacognitive components (e.g., planning, monitoring, or evaluation) most
strongly predicted students’ problem-solving performance. This quantitative phase
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provided statistical evidence of the effectiveness of the deep learning visualization
intervention and the interrelationships among the study’s core variables.

Computational Analysis

The computational analysis was conducted to evaluate the performance of the
deep learning model and to examine the alignment between error correction
mechanisms in computational systems and human learning processes. The loss and
accuracy curves of the model were analyzed to assess the efficiency of error correction
during backpropagation. Furthermore, Dynamic Time Warping (DTW) was applied to
measure temporal similarity between the model’s loss function curve and students’
learning progression curve, revealing the degree of structural correspondence between
machine learning and human cognitive learning patterns. Additionally, a feature
importance analysis was used to identify the cognitive features most influential to
learning success—such as model revision frequency, reflection duration, and
conceptual error count. The results of this computational analysis provided empirical
validation for the proposed Cognitive Backpropagation Learning (CBL) model,
demonstrating the dynamic parallelism between error-driven learning in artificial
systems and metacognitive reflection in human cognition.

Qualitative Thematic Analysis

To explore the depth and meaning of students’ reflective learning experiences,
qualitative data from digital reflection journals and semi-structured interviews were
analyzed using thematic analysis. Furthermore, methodological triangulation was
employed by integrating quantitative findings, computational simulations, and
qualitative reflective data. This triangulated design strengthened the internal validity
and ensured that the interpretations derived from the data were consistent, convergent,
and credible across multiple lines of evidence.

Research Ethics

This study strictly adhered to institutional and international ethical standards for
educational research. Prior to data collection, all participants received a comprehensive
information sheet outlining the study’s objectives, procedures, potential benefits, and
risks. Informed consent was obtained from each participant, ensuring voluntary
participation and the right to withdraw at any time without academic consequences.
To maintain confidentiality, all quantitative and qualitative data were anonymized
before analysis, with personal identifiers such as names, student numbers, and digital
logs replaced by coded references. In visual outputs generated by the deep learning
model (e.g., loss curves, error heatmaps, and learning trajectories), no personal data
were displayed, and all results were aggregated to represent group-level patterns rather
than individual profiles. The study was conducted in full compliance with the Ethics
Review Board of Universitas Negeri Makassar, following the principles of respect for
persons, beneficence, and justice. Digital data were securely stored in encrypted
repositories accessible only to authorized researchers. Upon completion of the
intervention, participants were debriefed, provided with access to the study’s findings,
and given feedback on their learning progress. This approach ensured that ethical
compliance extended beyond procedural requirements, fostering a genuinely
educative, reflective, and participatory research experience aligned with the
developmental aims of the study.
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RESULT AND DISCUSSION
Result
Improvement in Linear Programming Learning Outcomes

The paired sample t-test analysis revealed a statistically significant improvement
in students’ performance between the pretest and posttest following the deep learning
visualization intervention.

Table 2. Improvement in Linear Programming Learning Outcomes

Statistic Pretest Posttest t p Description
Mean 61.23 80.57 13.72 <0.001 Significant
Standard Deviation (SD) 8.45 7.62

Sample Size (n) 60 60

Mean Difference 1934 - - - +31.6% Increase

Source: Primary data from student pretest—posttest results (n = 60), 2025.

The results indicate a substantial and statistically significant enhancement in
students’ understanding of Linear Programming concepts after the integration of deep
learning visualizations. The mean score increased from 61.23 to 80.57, representing a
31.6% improvement in academic performance. Additionally, the reduction in standard
deviation (from 8.45 to 7.62) suggests a more consistent level of achievement across
participants, indicating that the intervention effectively supported learners with
varying levels of prior ability.

This improvement reflects not only an increase in procedural accuracy but also
a deepened conceptual comprehension of mathematical modeling, particularly in
linking constraints, objective functions, and feasible regions. These findings align with
prior studies highlighting that Al-assisted visualization tools can enhance students’
conceptual reasoning and engagement in mathematical problem-solving by
transforming abstract error-correction processes into visible, interpretable
representations (Nazaretsky et al., 2022; Wang et al., 2024).

1001 B -

80,57
80F

60|

401

Average Score

20F

0

Pretest Posttest

Figure 1. Improvement of Student Learning Outcomes in the Linear Programming Course.

Figure 1 illustrates a clear improvement in students’ performance between the
pretest and posttest in the Linear Programming course. The average score increased
from 61.23 to 80.57, representing a 31.6% improvement. This upward trend
demonstrates the effectiveness of the deep learning visualization intervention in
enhancing students’ conceptual understanding of mathematical modeling particularly
in identifying relationships among constraints, objective functions, and feasible

@2025 JPPI (https://jurnal.bimaberilmu.com/index.php/jppi) 2140
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional



http://creativecommons.org/licenses/by/4.0/

Nurhajarurahmah & Syarifuddin, Enhancing Mathematical Cognition through Deep Learning...

regions. The consistency of posttest scores (indicated by reduced variability) further
suggests that the intervention benefited students across different performance levels.

Increase in Metacognitive Awareness

Data from the Metacognitive Awareness Inventory (MAI) questionnaire revealed
a significant improvement between pre- and post-intervention scores. The average
total MAI score increased from 135.40 (SD = 12.18) to 159.85 (SD = 10.54). A paired
sample t-test yielded t(59) = 11.94, p < 0.001, indicating a statistically significant
enhancement in students’ metacognitive awareness. When analyzed by dimension (a)
Knowledge of cognition increased by +14.3%, particularly in the declarative
knowledge indicator (understanding of one’s own thinking strategies) and (b)
regulation of cognition increased by +19.8%, especially in the monitoring and
evaluation indicators—both closely related to reflective error analysis. Furthermore,
the correlation between improvement in MAI scores and learning outcomes was
significant (r = 0.62, p < 0.001), suggesting that the higher the students’ cognitive
reflection, the greater their academic performance gains.
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Figure 2. Convergence Curve of the Deep Learning Model Loss Function.

The figure shows significant increases in both dimensions of metacognition:
knowledge of cognition (+14.3%) and regulation of cognition (+19.8%). Statistical
analysis indicated a significant difference between pre- and post-intervention scores
(t(59) = 11.94, p < .001), with a positive correlation between metacognitive gains and
academic performance (r = .62, p <.001).

Deep Learning Model Performance

The constructed Multilayer Perceptron (MLP) model demonstrated stable
convergence after 200 training epochs. The loss function value (Mean Squared Error,
MSE) consistently decreased from 0.257 at epoch 1 to 0.031 at epoch 200, following
a convergence curve that closely mirrored the gradual reduction of students’
conceptual errors over the learning period. The model achieved a validation accuracy
of 89.4%, indicating strong predictive alignment with students’ actual problem-solving
performance. Further inspection of feature gradients revealed that the model “learned
most intensively” from two key types of student errors: (1) Constraint
misrepresentation — errors in formulating mathematical constraints, and (2)
Inaccurate identification of the optimal point within the feasible region.
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These error categories exhibited the highest gradient magnitudes, suggesting that
both the neural model and students underwent their most significant learning
adjustments in response to these specific conceptual challenges.

e
o

e
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—e— Student Learning Curve
—e- Deep Learning Model Loss (Inverted)

o
~

o
N
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Proportion of Success / Loss (MSE)

Learning Week

Figure 3. Relationship Between Student Learning Curve and Deep Learning Model
Loss Function.

The figure illustrates a parallel convergence pattern between students’ learning
progression (solid line) and the deep learning model’s loss minimization (dashed line,
inverted for comparison). The alignment between the two curves (DTW = 0.81, p <
.01) indicates a structural similarity between human reflective learning and the
backpropagation-based error correction process in the computational model. The
shaded area highlights the temporal alignment between human and machine learning
adaptation phases.

Analysis of Error Correction Dynamics

The visualization of the loss function curve from the deep learning (DL) model
and the students’ learning curve revealed a parallel pattern of convergence.
1. During Weeks 1 to 3, the model’s loss decreased sharply, corresponding to a
significant increase in students’ practice scores (from 58% to 73%).

2. After Week 4, both curves began to plateau, indicating a stabilization phase in
understanding—reflecting cognitive consolidation in students and representational
optimization in the model.

Temporal pattern similarity analysis using Dynamic Time Warping (DTW)
yielded an average alignment score of 0.81 (p < 0.01) between the DL model’s loss
curve and the students’ learning performance curve. This finding reinforces the
hypothesis that the error correction mechanism in deep learning structurally mirrors
the dynamics of human metacognitive reflection.

Furthermore, feature importance analysis revealed that the variables model
revision frequency (0.34) and reflection duration (0.29) contributed most strongly to
student success. These results suggest that iterative rethinking and deep reflection
serve as the primary cognitive factors driving adaptive learning.

Student Reflections

Thematic analysis of 60 reflective journals and 10 semi-structured interviews
revealed three overarching themes that capture the evolution of students’
metacognitive awareness during the deep learning visualization intervention: (1) Error
Recognition, (2) Strategy Adjustment, and (3) Reflective Transformation. These
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themes collectively illustrate a developmental trajectory from recognizing cognitive
blind spots to achieving adaptive and self-corrective learning behaviors.

1. Error Recognition

In the early phase of the intervention, most students initially perceived mistakes
merely as calculation errors or lapses in attention. However, exposure to visualizations
of the loss function and error heatmaps enabled them to identify deeper conceptual
inaccuracies in formulating mathematical models. Students began to differentiate
between procedural errors (e.g., incorrect algebraic manipulation) and conceptual
errors (e.g., misunderstanding the relationship between constraints and the objective
function). Several students described this experience as a moment of cognitive
revelation:

“I used to think I was just careless. But after seeing the loss curve, | realized that
my error came from how | structured the problem — not the arithmetic.”
(Student PL-09, Reflection, Week 3)

“Before the Al visualization, I couldn’t tell where my logic failed. But when I saw
how the loss dropped after fixing my constraint, it felt like watching my own brain
learning.” (Student PL-27, Interview)

This pattern reflects the monitoring component of metacognition (Flavell, 1979),
in which learners develop the capacity to detect and interpret discrepancies between
their intended and actual performance. The visualization acted as a metacognitive cue,
externalizing what is typically an internal process and enabling students to see their
own thinking errors in real time.

2. Strategy Adjustment

As students’ awareness of their cognitive errors deepened, they began to revise
their learning strategies in a more deliberate and systematic way. Many reported
adopting reflective routines such as documenting mistakes, hypothesizing their causes,
and testing revised solutions. This behavioral shift mirrors the regulation of cognition
phase within the Self-Regulated Learning (SRL) model (Zimmerman, 2002), where
learners actively control and adjust their learning strategies in response to feedback.

“Seeing how the Al adjusted its weights after every error made me realize | should

adjust my own methods too. Now, before solving, | plan my approach and double-

check the relationships between variables.” (Student PL-13, Reflection, Week 5)
“l used to repeat the same mistakes. Now, | review my error pattern and change
my steps—just like the network changes its parameters after each iteration.”
(Student PL-34, Interview)

Students began employing self-regulatory strategies such as goal-setting,
monitoring progress, and strategic revision. This reflects a metacognitive transition
from passive error recognition to active problem reformulation, a hallmark of higher-
order mathematical reasoning (Kumah, 2023; Nurhajarurahmah, 2021). The parallel
with backpropagation becomes conceptually clear: in both humans and machines,
errors serve as adaptive signals that guide the optimization of internal representations.

3. Reflective Transformation
By the later weeks of the intervention, students demonstrated a transformative
change in their mindset toward learning and error. They began to articulate a sense of
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ownership and acceptance toward their cognitive processes, reframing mistakes as
opportunities for growth rather than indicators of failure. Visualizations of model
convergence (loss minimization) provided a powerful metaphor for personal cognitive
convergence, a visible reminder that learning is an iterative, self-correcting process.

“l used to be afraid of being wrong, but now | see each mistake as a gradient
pointing me toward better understanding.”
(Student PL-17, Reflection, Week 6)

“When | watched the loss curve flatten, | realized my thinking also started to

stabilize. Errors aren’t failures—they’re feedback for improvement.”
(Student PL-02, Reflection, Week 7)

This stage aligns with Mezirow’s (1997) transformative learning theory, where
critical reflection on prior assumptions leads to a fundamental reorientation of one’s
meaning-making system. The reflective transformation observed here indicates that
the visualization of Al learning dynamics can evoke a comparable internal process of
cognitive restructuring in human learners.

Synthesis Across Themes: Reflective—Computational Alignment

Collectively, the three themes error recognition, strategy adjustment, and
reflective transformation—illustrate a reflective—computational alignment between
human cognition and the deep learning model’s backpropagation mechanism. Just as
the network reduces loss through recursive weight adjustment, students refine their
understanding through recursive reflection.

Table 3. Cognitive Stage and Reflective Process Description

Cognitive Stage Backpropagation Reflective Process Description
Mechanism
Error Recognition Output error computation ~ Awareness of conceptual/procedural mistakes
Strategy Adjustment  Gradient propagation Strategic  modification and  cognitive
backward reorganization
Reflective Weight  update and Internalization of new understanding and
Transformation convergence reflective stability

This alignment underscores the central premise of the Cognitive
Backpropagation Learning (CBL) framework proposed in this study — that the
principles of error-driven learning in machines can serve as an interpretive model for
human metacognitive development. The integration of deep learning visualization not
only made reflection visible but also transformed it into an interactive, data-informed
process of cognitive evolution.

DISCUSSION
Relationship Between Backpropagation and Metacognitive Reflection

The findings of this study demonstrate that the error-driven learning mechanism
in deep learning (DL) exhibits both structural and functional equivalence to human
metacognitive reflection. In DL, the error feedback signal is propagated backward
through the network to adjust the connection weights, enabling the system to update
its internal representations toward the desired target. This process mirrors the
metacognitive mechanism in human learning, where individuals analyze their
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reasoning outcomes, identify errors, and modify cognitive strategies to improve
accuracy and efficiency.

Conceptually, the present study validates the proposed Cognitive
Backpropagation Learning (CBL) model, which interprets backpropagation not merely
as a mathematical optimization algorithm, but as a cognitive metaphor for human
reflection. In this framework, error feedback serves as a bidirectional adaptive signal:
within artificial systems, it modifies network parameters, whereas within human
cognition, it updates thinking strategies and activates reflective awareness. Thus, the
computational system operates as an external projection of human internal reflection,
aligning with the notion of computational cognition proposed by Lake et al. (2017) in
Nature Human Behaviour.

Empirical evidence from this study further supports this theoretical analogy. The
Dynamic Time Warping (DTW) analysis yielded a similarity index of 0.81 (p < 0.01)
between the DL model’s loss function curve and the students’ learning curve,
indicating a high degree of temporal alignment between machine and human error
correction processes. This parallelism reinforces the classic view of (Rumelhart et al.,
1986) that backpropagation fundamentally emulates neurocognitive learning
principles in the human brain, where error signals drive adaptive learning and synaptic
modification. In other words, when students reflect on and correct their mathematical
reasoning errors, they are cognitively enacting the same principle of iterative error
correction that governs deep learning systems.

Integration of Deep Learning Visualization in Mathematics Learning

The use of deep learning, based error visualization was found to not only
improve students’ conceptual understanding of Linear Programming but also to
consciously activate their metacognitive reflection processes. Through visual
representations such as loss curves and error heatmaps, students could observe how
the model’s errors decreased across iterations, enabling them to analogize and track
the evolution of their own learning errors. This process effectively externalized
cognitive monitoring, allowing students to “see” learning as a dynamic, self-correcting
system rather than a static outcome.

This finding aligns with recent advancements in Artificial Intelligence in
Education (AIED) and Explainable Artificial Intelligence (XAl), which emphasize the
role of model interpretability in supporting learner reflection. XAl functions as a
metacognitive scaffold a mediating tool that helps learners understand the interplay
between input (learning strategy), process (error correction), and output (learning
performance). As Holmes described, this visualization serves as a “digital learning
mirror”’, allowing students to project, analyze, and refine their thinking patterns
through interactive and pedagogically meaningful representations.

The integration of DL visualization also facilitated a crucial cognitive shift
among students—from result-oriented to process-oriented learning. In mathematics
education, this transition is particularly vital because mastery is not limited to
obtaining correct answers but involves understanding why and how errors occur. The
loss function visualization, therefore, operates as a conceptual model for the principle
of “learning through error,” embodying the recursive, reflective reasoning essential to
higher-order mathematical thinking.

Collectively, these findings highlight the pedagogical potential of integrating Al-
based interpretive visualization within mathematics learning environments. By
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aligning computational modeling with cognitive reflection, instructors can design
more transparent and self-regulated learning experiences, where both students and
systems learn from errors in a shared adaptive cycle.

Implications for Mathematics Instruction

The integration of deep learning visualization within mathematics instruction
presents several key pedagogical implications. First, the findings demonstrate that
error-driven visualization can function as an effective metacognitive feedback
mechanism, helping students to monitor their reasoning and detect conceptual
inconsistencies more efficiently. Traditional mathematics instruction often emphasizes
procedural correctness, yet lacks mechanisms to make the thinking process visible. By
embedding Al-generated visual analytics—such as loss curves, error maps, and
feature importance displays—educators can transform invisible cognitive processes
into tangible reflective artifacts that promote deeper understanding and adaptive
reasoning.

Second, the Cognitive Backpropagation Learning (CBL) framework provides a
conceptual bridge between algorithmic learning and reflective pedagogy. Within this
model, instructional design can incorporate iterative feedback loops similar to
backpropagation—where students repeatedly test, evaluate, and refine their problem-
solving strategies based on structured feedback. This recursive approach supports
formative assessment, enabling educators to trace learning progress not merely through
scores but through patterns of conceptual improvement.

Third, the use of DL visualization tools can foster personalized learning
pathways. By analyzing students’ learning curves and cognitive profiles, Al models
can adapt the level of task complexity or recommend targeted reflection prompts based
on each student’s error pattern. This personalization aligns with current directions in
Al-based adaptive learning (Pacheco et al., 2025; Wang et al., 2024), where data-
driven insights are used to design reflective scaffolds that accommodate individual
learning differences.

Finally, from a pedagogical standpoint, the integration of Al visualization into
mathematics education repositions errors as pedagogical resources rather than
obstacles. When students visualize the iterative nature of correction—both in machines
and in their own cognition—they develop a mindset oriented toward productive
struggle, persistence, and continuous self-improvement. Such reflective dispositions
are essential for nurturing 21st-century mathematical literacy, where success depends
on flexibility, adaptability, and critical thinking rather than rote accuracy.

Relevance to Cognitive and Self-Regulated Learning Theories

The results of this study contribute to extending cognitive learning theory and
self-regulated learning (SRL) models by introducing a computationally grounded
analogy that explains how reflection and error correction operate dynamically. Within
the SRL framework (Stanton et al., 2021; Zimmerman, 2002) learners progress
through three iterative stages: forethought, performance control, and self-reflection.
The present findings suggest that these stages parallel the computational phases of
deep learning: the feedforward pass (planning and execution), the error computation
(monitoring performance), and the backpropagation (reflective adjustment and weight
updating).
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This correspondence provides a novel theoretical link between artificial and
human learning systems—one that emphasizes error as a learning catalyst. Just as
backpropagation allows neural networks to gradually approximate optimal solutions
through iterative correction, metacognitive reflection enables human learners to
progressively refine their conceptual understanding through cycles of self-assessment
and adjustment. The DTW similarity score (0.81, p < .01) between the model’s loss
curve and the students’ learning trajectory empirically supports this structural
alignment.

From a neurocognitive perspective, this parallelism echoes evidence that error-
related negativity (ERN) signals in the human brain function similarly to error
gradients in artificial networks—serving as feedback that triggers cognitive adaptation
(Holroyd & Coles, 2002; Luo, 2024). The convergence of findings across
computational, psychological, and pedagogical domains suggests that reflective
learning may be understood as a bio-computational process—an adaptive system
governed by recursive feedback loops.

Consequently, the Cognitive Backpropagation Learning (CBL) framework
proposed here extends SRL theory by offering a mechanistic explanation of how
reflection occurs: through continuous adjustment of internal cognitive parameters in
response to detected errors. This model underscores the role of error awareness, self-
correction, and reflective monitoring as essential cognitive drivers of deep learning
not only for machines but also for humans. In addition, the integration of deep learning
visualization within mathematics learning environments not only advances
instructional design but also provides theoretical grounding for understanding
reflection as an algorithmic, adaptive, and measurable cognitive process. The
following section concludes the study by summarizing its contributions, limitations,
and directions for future research.

CONCLUSION

This study demonstrates that integrating deep learning visualization grounded in
the principle of backpropagation can significantly enhance both mathematical learning
outcomes and metacognitive awareness among university students. By bridging
computational modeling with cognitive reflection, the proposed Cognitive
Backpropagation Learning (CBL) framework establishes a meaningful analogy
between how artificial networks and human learners adapt through feedback and error
correction. Quantitative results revealed substantial improvements in students’
performance and metacognitive regulation, while the computational analysis showed
a strong temporal alignment (DTW = 0.81, p <.01) between the model’s loss reduction
and students’ learning progress. Qualitative reflections further confirmed that
visualizing learning errors fostered deeper self-awareness, strategy adjustment, and
reflective transformation. Collectively, these findings affirm that Al-based
visualization is not merely a technological tool but a pedagogical catalyst for
cultivating reflective, adaptive, and self-regulated mathematical thinkers. The study
contributes to the broader discourse on Al in education by offering an interpretable,
cognitively aligned approach that transforms error into insight, positioning reflection
as both a human and algorithmic process at the heart of meaningful learning.
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