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Abstract: This mixed-methods study examines whether backpropagation-based deep learning 

(DL) visualizations can strengthen metacognition and learning outcomes in a university Linear 

Programming course. Sixty undergraduates (8-week blended format) completed pre/post 

cognitive tests and the Metacognitive Awareness Inventory (MAI), while their LMS activity 

traces (e.g., time-on-task, revision frequency, error types) trained a multilayer perceptron. The 

intervention exposed students to DL visual artifacts—loss curves, gradient/weight updates, 

and error heatmaps—as reflective scaffolds linking machine error correction to human self-

regulation. Quantitatively, mean test scores increased from 61.23 to 80.57 (paired-t, p < .001), 

and total MAI rose from 135.40 to 159.85 (paired-t, p < .001). Gains concentrated in regulation 

of cognition (monitoring/evaluation). Metacognitive improvement correlated with 

achievement (Pearson r = .62, p < .001). Computationally, model loss decreased from 0.25 to 

0.03 over 200 epochs with 89.4% validation accuracy; Dynamic Time Warping = 0.81 (p < 

.01) indicated strong temporal alignment between DL loss minimization and students’ learning 

curves. Qualitatively, thematic analysis of weekly reflections and interviews revealed a 

progression from error recognition to strategy adjustment and reflective transformation, 

recasting errors as actionable signals. Triangulating quantitative, computational, and 

qualitative strands supports the Cognitive Backpropagation Learning (CBL) framework: DL 

error feedback parallels human metacognitive feedback, and its visualization functions as a 

digital mirror that externalizes reflection. Findings recommend interpretable DL dashboards 

as practical, class-deployable scaffolds to cultivate reflective, adaptive mathematical thinkers. 

Keywords: Deep learning visualization; backpropagation; metacognition; self-regulated 

learning; learning analytics; linear programming 

Abstrak: Studi metode campuran ini mengkaji apakah visualisasi pembelajaran mendalam 

(DL) berbasis backpropagation dapat memperkuat metakognisi dan hasil pembelajaran dalam 

mata kuliah Pemrograman Linear universitas. Enam puluh mahasiswa S1 (format campuran 8 

minggu) menyelesaikan tes kognitif pra/pasca dan Inventarisasi Kesadaran Metakognitif 

(MAI), sementara jejak aktivitas LMS mereka (misalnya, waktu pengerjaan tugas, frekuensi 

revisi, jenis kesalahan) melatih persepsi berlapis. Intervensi ini memaparkan mahasiswa pada 

artefak visual DL—kurva kerugian, pembaruan gradien/bobot, dan peta panas kesalahan—

sebagai perancah reflektif yang menghubungkan koreksi kesalahan mesin dengan regulasi diri 

manusia. Secara kuantitatif, skor tes rata-rata meningkat dari 61,23 menjadi 80,57 (paired-t, p 

< .001), dan total MAI meningkat dari 135,40 menjadi 159,85 (paired-t, p < .001). Keuntungan 

terkonsentrasi pada regulasi kognisi (monitoring/evaluasi). Peningkatan metakognitif 

berkorelasi dengan prestasi (Pearson r = .62, p < .001). Secara komputasional, kerugian model 

menurun dari 0,25 menjadi 0,03 selama 200 epoch dengan akurasi validasi 89,4%; Dynamic 

Time Warping = 0,81 (p < .01) menunjukkan keselarasan temporal yang kuat antara 

minimisasi kerugian DL dan kurva belajar siswa. Secara kualitatif, analisis tematik dari 

refleksi dan wawancara mingguan mengungkapkan perkembangan dari pengenalan kesalahan 

menuju penyesuaian strategi dan transformasi reflektif, yang menyusun kembali kesalahan 
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sebagai sinyal yang dapat ditindaklanjuti. Triangulasi untaian kuantitatif, komputasional, dan 

kualitatif mendukung kerangka kerja Cognitive Backpropagation Learning (CBL): umpan 

balik kesalahan DL sejajar dengan umpan balik metakognitif manusia, dan visualisasinya 

berfungsi sebagai cermin digital yang mengeksternalisasi refleksi. Temuan 

merekomendasikan dasbor DL yang dapat ditafsirkan sebagai perancah praktis yang dapat 

diterapkan di kelas untuk menumbuhkan pemikir matematika yang reflektif dan adaptif.  

Kata Kunci: Visualisasi pembelajaran mendalam; backpropagation; metakognisi; 

pembelajaran yang diatur sendiri; analitik pembelajaran; pemrograman linier 

INTRODUCTION 

The digital transformation of higher education has accelerated the integration of 

artificial intelligence (AI) particularly deep learning (DL) into instructional design and 

assessment. In mathematics education, the principal challenge extends beyond 

procedural mastery to metacognitive competence: monitoring one’s understanding, 

evaluating errors, and adaptively revising problem-solving strategies. Interventions 

that foreground comprehension monitoring, error evaluation, and strategy adaptation 

can improve achievement and the quality of students’ learning decisions; however, 

their benefits hinge on high-quality instructional design and sustained collaboration 

among instructors, students, and technologies (An et al., 2020; Gutierrez de Blume, 

2022; Nazaretsky et al., 2022; Xu et al., 2025). Recent work in Artificial Intelligence 

in Education (AIED) and learning analytics likewise shows that AI-based 

interventions can enhance learning outcomes and decision-making, provided that 

pedagogical design and alignment with authentic learning processes are treated as non-

negotiable prerequisites (Wang et al., 2024). 

Algorithmically, backpropagation is the core DL mechanism for error-driven 

learning: discrepancies between model outputs and targets are propagated backward 

through the network to update weights via gradient descent (the chain rule of calculus). 

This mechanism enables neural networks to acquire increasingly abstract, task-

relevant hierarchical representations. Formal explanations and best practices are well 

documented in the seminal literature (Rumelhart et al., 1986) and standard DL 

monographs. On the human side, metacognition “thinking about one’s thinking” is 

foundational to success in learning mathematics. The Metacognitive Awareness 

Inventory (MAI) operationalizes two domains, knowledge of cognition and regulation 

of cognition, and shows stable factor structure for assessing adults’ metacognitive 

awareness  (Cogliano et al., 2021; Lavi et al., 2019). Complementing this, the self-

regulated learning (SRL) framework emphasizes the forethought–performance–self-

reflection cycle—goal setting, strategic monitoring, and evaluation with adjustment—

well aligned with mathematicians’ recurring need to manage conceptual and 

procedural difficulties (Kumah, 2023; Lavi et al., 2019; Schraw & Dennison, 1994; 

Siqueira et al., 2020; Williams et al., 2022). 

Cognitive neuroscience indicates that human error processing is supported by 

neural signals such as error-related negativity (ERN), linked to reinforcement learning 

mechanisms and dopaminergic modulation (Iftanti et al., 2021; Luo, 2024; Mathaba & 

Bayaga, 2021). Conceptually, this provides a bridge between error feedback in 

artificial neural networks and error monitoring in the human brain—both facilitating 

strategic adaptation following mistakes. Yet this theoretical bridge is rarely translated 
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into explicit pedagogical artefacts that scaffold student reflection in university-level 

mathematics (Cogliano et al., 2021; Hammoda, 2025; Holroyd & Coles, 2002). 

Over recent decades, learning analytics dashboards (LADs) have been used to 

visualize progress, provide formative feedback, and promote SRL practices 

(Anthonysamy, 2021; Wangid et al., 2020). Systematic reviews highlight a shift from 

analytics-centric to pedagogy-centric, learner-centered designs, while underscoring 

the need for design principles that explicitly connect visualizations to meaningful 

cognitive processes. In DL, advances in interpretability (e.g., feature visualization and 

attribution) promise to “open” the black box so that representational learning—

including traces of error correction—becomes intelligible to humans. Nevertheless, 

the use of DL visualizations as metacognitive scaffolds for mathematics students 

remains under-explored empirically (Paulsen & Lindsay, 2024). There is a pressing 

need for replicable classroom interventions that leverage learning analytics to provide 

not only scores/rankings but also visual narratives of how “errors are corrected” over 

time—by the model and by students themselves (Pan et al., 2024). 

Guided by this background, the present study addresses three research questions. 

First, to what extent can personalized backpropagation visualizations grounded in 

students’ own error data enhance key metacognitive indicators—monitoring, control, 

and reflection—in learning mathematics? This rests on the premise that when learners 

can see visual representations of errors and corrections, they become more aware of 

their thinking and better able to self-regulate strategy use. Second, what is the 

relationship between DL loss minimization dynamics and students’ mathematics 

learning curves (changes in accuracy, response time, and error types) over the course 

of the intervention? We anticipate parallel patterns between machine error correction 

and human metacognitive reflection in grasping mathematical concepts. Third, how 

do students perceive the usefulness and comprehensibility of these visualizations as 

reflective scaffolds, and which factors moderate their benefits (e.g., prior ability, 

cognitive load, or learning styles)? 

Overall, this article seeks to bridge AI theory and human cognitive theory by 

introducing pedagogically meaningful visual artefacts. Under this approach, learning 

mathematics is framed not only as arriving at correct answers but as learning by 

reflection, supported by DL’s error-driven mechanisms. We aim to contribute to the 

AIED and mathematics education literatures while offering a practical, interpretable 

DL-based model that instructors and learning designers can deploy to cultivate 

reflective, adaptive, and self-aware mathematical thinkers. 

Literature Review and Theoretical Framework 

Backpropagation and the Interpretability of Deep Learning 

The concept of deep learning (DL) originates from artificial neural networks 

(ANNs), which aim to emulate the fundamental mechanisms of human learning 

through layered, adaptive processing. The core algorithm enabling DL’s learning 

capability is backpropagation, which was popularized by Rumelhart, Hinton, and 

Williams (Rumelhart et al., 1986). In this mechanism, the output error—defined as the 

difference between the model’s prediction and the actual target—is propagated 

backward through the network layers to iteratively adjust connection weights using 

gradient descent. Mathematically, backpropagation mirrors the principle of error-

driven learning, a process also observed in biological neural systems, particularly in 
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synaptic plasticity and reinforcement learning mechanisms within the prefrontal cortex 

(Saleem et al., 2022). This iterative correction process enables the system to 

progressively minimize the loss function, thereby optimizing performance over time. 

DL’s capacity to recognize complex patterns and generalize across large datasets 

has made it a powerful analytical tool across domains, including education. However, 

it has often been criticized for its lack of transparency—the so-called “black box” 

problem. Consequently, the field of interpretability and neural network visualization 

has become critical for understanding how models perform error correction and 

construct conceptual representations. Techniques such as gradient visualization, 

activation mapping, and feature visualization allow researchers and educators to 

observe the “thinking pathway” of the network—how its internal weights evolve as it 

learns from mistakes. 

In a pedagogical context, these visual techniques offer a unique potential to 

parallel human cognitive reflection—illustrating how individuals detect, analyze, and 

correct their own errors throughout the learning process. Thus, backpropagation 

transcends its role as a mere computational algorithm; it serves as a conceptual 

metaphor for explaining the dynamics of self-correction and adaptive reasoning in 

human learning, particularly in mathematics education, which demands logical 

precision and strong error awareness. 

Metacognition and Self-Regulated Learning in Mathematics Education 

In educational psychology, metacognition is commonly defined as an 

individual’s ability to be aware of, monitor, and control their own cognitive processes 

(Flavell, 1979). Broadly, metacognition comprises two interrelated dimensions: 

knowledge of cognition—awareness of how one learns—and regulation of 

cognition—the ability to plan, monitor, and evaluate one’s learning process. 

Within mathematics education, metacognition plays a central role in shaping 

effective problem-solving behavior. Students with higher levels of metacognitive 

awareness are typically able to recognize errors in their reasoning, select alternative 

strategies, reflect on their thought processes, and adapt their approaches to different 

problem types. This relationship aligns closely with (Zimmerman, 2002) theory of 

Self-Regulated Learning (SRL), which posits that successful learners move through 

three cyclical phases: forethought (planning and goal setting), performance 

(implementation and strategy monitoring), and self-reflection (evaluation and self-

correction). 

These three phases form a cognitive feedback loop that can be conceptually 

paralleled with the backpropagation mechanism in deep learning. In both systems—

human and artificial—error feedback serves as an adaptive signal for learning. When 

a student fails to solve a mathematical problem, reflection upon that failure provides 

cognitive feedback that triggers a revision of strategies and a restructuring of 

understanding—just as neural network weights are updated based on an error signal to 

minimize loss. 

Recent empirical studies further substantiate the link between metacognition and 

academic achievement. Systematic reviews have shown that AI-powered learning 

analytics can support the development of students’ metacognitive competencies by 

providing transparent feedback and metacognitive dashboards that make learning 

progress visible (Pacheco et al., 2025). Similarly, demonstrate how visual explanations 
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and learner-controlled interfaces can be operationalized in e-learning environments to 

promote deeper reflection and self-regulation (Ooge et al., 2025). 

The visibility of internal computational processes—through visualizations such 

as weight maps, gradient plots, and loss curves—enables both researchers and learners 

to observe the “thinking path” of neural networks, revealing how weights evolve after 

errors are detected. These techniques are foundational to the field of Explainable AI 

(XAI), which seeks to make DL models more transparent and interpretable to humans. 

Pedagogically, such visualizations offer promising potential for mirroring human 

cognitive reflection, allowing learners to externalize their mental processes—seeing, 

evaluating, and correcting their mistakes in parallel with how intelligent systems 

optimize through feedback (Alfredo et al., 2024). 

Thus, the principle of backpropagation in deep learning extends beyond 

computation—it can serve as a conceptual and pedagogical metaphor for human 

learning itself. It illustrates how self-correction and adaptive reasoning operate through 

feedback-driven refinement. Particularly in mathematics education, where logical 

precision, error awareness, and adaptive thinking are critical, this analogy provides a 

meaningful theoretical bridge between the mechanics of artificial intelligence and the 

cognitive dynamics of human reasoning. 

Integration of Computational and Cognitive Analytics: The Cognitive 

Backpropagation Learning (CBL) Framework 

To bridge the theoretical divide between artificial intelligence (AI) and cognitive 

learning theory, this study introduces a conceptual model termed Cognitive 

Backpropagation Learning (CBL). The framework is grounded in the structural and 

functional analogy between the learning mechanisms of deep learning (DL) systems 

and the dynamic processes of human cognitive development. CBL conceptualizes 

backpropagation—the iterative process of error correction and weight adjustment in 

neural networks—as a computational metaphor for metacognitive reflection and 

adaptive reasoning in human learning. Through this lens, deep learning serves not 

merely as a technological model but as a cognitive-analytical framework that 

illustrates how both machines and humans learn from error, refine internal 

representations, and achieve higher-order understanding through feedback-driven 

adaptation. This framework integrates three interdependent dimensions: 

1. Computational dimension – visualizing how the DL model minimizes errors 

through feedback propagation and parameter optimization. 

2. Cognitive dimension – mapping these dynamics onto human reflective processes, 

including error recognition, monitoring, and regulation. 

3. Pedagogical dimension – using DL visualizations as reflective scaffolds to help 

students externalize, analyze, and refine their thinking strategies. 

The Cognitive Backpropagation Learning (CBL) model thus unifies algorithmic 

and psychological perspectives on learning, positioning AI not merely as a 

computational tool but as a mirror of human cognition that can make reflection visible, 

measurable, and pedagogically actionable. 
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Table 1. Structural Analogy between Backpropagation and Human Cognitive 

Processes 
Aspect Backpropagation in 

Deep Learning 

Human Cognitive 

Process 

Interpretive Description 

Basic Unit Artificial neuron (node) Conceptual unit/neural 

schema 

Both serve as fundamental 

representational units for 

information processing. 

Input 

Representation 

Numerical data/feature 

vectors 

Conceptual knowledge/ 

prior experience 

Learning begins from 

structured or unstructured 

input that shapes internal 

representations. 

Learning 

Mechanism 

Error feedback 

propagated backward 

to adjust weights 

Reflective feedback 

used to correct 

misconceptions and 

revise thinking 

strategies 

Error signals trigger 

updates in both systems, 

promoting more accurate 

internal models. 

Optimization 

Goal 

Minimize the loss 

function 

Maximize conceptual 

understanding and 

accuracy 

Both systems aim for 

convergence toward more 

optimal representations of 

knowledge. 

Adaptation 

Process 

Gradient descent to 

iteratively improve 

model parameters 

Iterative self-regulation 

through reflection and 

strategy refinement 

Learning occurs through 

cycles of feedback, 

correction, and adaptation. 

Outcome 

Representation 

Optimized network 

capable of accurate 

prediction 

Refined cognitive 

schema enabling 

adaptive problem-

solving 

Both result in more 

efficient and generalized 

performance through 

learning from error. 

The CBL framework reimagines learning as a bi-directional exchange between 

machine-based and human-based feedback systems. Backpropagation, as a 

computational mechanism of error correction, mirrors the self-regulatory and 

reflective mechanisms observed in human cognition. When represented visually—

through loss curves, weight maps, or gradient flows—these dynamics become 

powerful pedagogical artifacts that externalize the abstract process of reflection and 

make it observable for learners. 

In mathematics education, particularly in subjects like Linear Programming, this 

framework enables students to see how both artificial and human learning systems 

refine understanding through iterative correction. Such visualization promotes error 

awareness, encourages adaptive strategy use, and supports the formation of 

metacognitive habits essential for higher-order mathematical reasoning. 

Through this integration of computational analytics and cognitive reflection, 

Cognitive Backpropagation Learning (CBL) establishes a theoretical and empirical 

foundation for designing AI-supported reflective learning environments—where 

feedback is not only computationally optimized but also cognitively meaningful. 

Research Method 

Research Design 

This study employed a mixed-method approach with a sequential explanatory 
design, consisting of an initial quantitative phase followed by qualitative exploration 

and computational analysis. The quantitative data were used to identify the extent of 

change in learning outcomes and metacognitive awareness, while the qualitative and 

computational phases provided deeper insights into the reflective and adaptive 
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processes underlying these changes. This approach was selected to address two 

complementary dimensions of inquiry: (1) Human–empirical dimension — to examine 

how students reflect upon their errors and adjust their cognitive strategies while 

solving Linear Programming problems, and (2) Computational dimension — to model 

students’ error patterns using a deep learning algorithm based on backpropagation, and 

to visualize the error correction dynamics that occur during learning. 

These two dimensions were integrated analytically by comparing the loss 

function curve of the neural network model with the learning curve of students across 

the intervention. This comparative framework allowed the researchers to map 

analogical relationships between the machine learning process (i.e., optimization 

through backpropagation) and the human cognitive learning process (i.e., reflection 

and self-regulation) within the context of mathematics education. In this way, the study 

not only investigates the empirical effectiveness of AI-based visualization for 

enhancing metacognition but also explores the conceptual alignment between 

computational error correction and human reflective adaptation. 

Participants and Research Setting 

The participants of this study were undergraduate students enrolled in the 

Mathematics Education Program at Universitas Negeri Makassar, Indonesia (n = 60), 

aged between 18 and 21 years, who were taking the Linear Programming course at the 

time of the study. The sample was selected using a purposive sampling technique based 

on specific inclusion criteria. Participants were required to have: 

1. Completed prior coursework in Basic Mathematics and Linear Algebra, 

2. Demonstrated basic proficiency in mathematical software such as GeoGebra, 

Excel Solver, or introductory Python programming, and 

3. Expressed willingness to participate fully in all research activities conducted in 

both online and offline formats. 

The study was conducted over a period of eight weeks using a blended learning 

format that combined online and face-to-face instruction. The four online sessions 

were delivered through a Learning Management System (LMS) and focused on 

modeling real-world Linear Programming cases, while the four in-person sessions 

emphasized deep learning visualization exercises and guided cognitive reflection 

activities. This hybrid arrangement was designed to provide students with both 

independent digital exploration and interactive reflective discussion, allowing for the 

integration of computational modeling with metacognitive awareness practices 

throughout the learning cycle. 

Research Instruments 

This study employed three primary instruments: a cognitive test, a metacognitive 

inventory, and a computational model. 

Cognitive Instrument 

The cognitive instrument consisted of a learning achievement test developed 

based on the core competencies of the Linear Programming course. The test assessed 

four key aspects: (1) conceptual understanding of objective functions and constraints, 

(2) ability to formulate mathematical models from contextual problems, (3) 

competence in graphically representing feasible regions, and (4) application of the 

simplex or graphical method to determine optimal solutions. The test included 10 essay 
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questions and 10 multiple-choice items. Content validity was established through 

expert review by three lecturers specializing in applied mathematics, and internal 

reliability was confirmed using Cronbach’s Alpha (α > 0.80), indicating high 

consistency. 

Metacognitive Instrument 

The metacognitive instrument was an adapted version of the Metacognitive 

Awareness Inventory (MAI). It measures two major domains: (1) Knowledge of 

cognition, referring to awareness of one’s own learning strategies and cognitive 

processes, (2) Regulation of cognition, encompassing planning, monitoring, and 

evaluating one’s thinking processes. The adapted instrument consisted of 52 Likert-

scale items (1–5) contextualized for learning Linear Programming. Results from 

Confirmatory Factor Analysis (CFA) indicated strong construct validity (χ²/df < 3; CFI 

> 0.90) and high internal reliability (α = 0.86). (3) Computational Instrument 

The computational instrument was developed using Python (TensorFlow) and 

implemented through a Multilayer Perceptron (MLP) architecture to analyze students’ 

error patterns in constructing Linear Programming models.  

The model employed ReLU activation in the hidden layers, a Sigmoid function 

in the output layer, the Adam optimizer (learning rate = 0.001), and Mean Squared 

Error (MSE) as the loss function. The simulation results were visualized through: (1) 

Loss convergence curves, showing the decrease in prediction error across training 

epochs; (2) Weight adjustment maps, illustrating the evolution of network parameters; 

and (3) Error heatmaps, depicting the distribution and intensity of individual students’ 

errors. 

These visualizations were subsequently used as metacognitive reflection tools, 

enabling students to observe how both AI models and human learners learn from errors 

through iterative correction. The computational model thus served a dual function: 

analytical—by modeling cognitive patterns of error—and pedagogical—by providing 

visual feedback that fosters metacognitive awareness and reflective learning behavior. 

Data Analysis Techniques 

Data analysis in this study employed three complementary approaches 

quantitative statistical analysis, computational analysis, and qualitative analysis. These 

approaches were integrated to obtain a comprehensive understanding of how deep 

learning–based visualization interventions influence students’ learning outcomes, 

metacognitive awareness, and reflective dynamics in Linear Programming learning. 

Quantitative Statistical Analysis 

The quantitative analysis aimed to measure changes in learning outcomes and 

metacognitive awareness before and after the intervention. A paired-sample t-test was 

conducted to examine the significance of differences between pretest and posttest 

scores for both the Learning Achievement Test and the Metacognitive Awareness 

Inventory (MAI). Subsequently, a Pearson correlation analysis was used to explore the 

relationship between improvements in MAI scores and gains in learning performance, 

providing insight into how metacognitive growth contributes to academic 

achievement. In addition, a multiple linear regression analysis was applied to identify 

which metacognitive components (e.g., planning, monitoring, or evaluation) most 

strongly predicted students’ problem-solving performance. This quantitative phase 
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provided statistical evidence of the effectiveness of the deep learning visualization 

intervention and the interrelationships among the study’s core variables. 

Computational Analysis 

The computational analysis was conducted to evaluate the performance of the 

deep learning model and to examine the alignment between error correction 

mechanisms in computational systems and human learning processes. The loss and 

accuracy curves of the model were analyzed to assess the efficiency of error correction 

during backpropagation. Furthermore, Dynamic Time Warping (DTW) was applied to 

measure temporal similarity between the model’s loss function curve and students’ 

learning progression curve, revealing the degree of structural correspondence between 

machine learning and human cognitive learning patterns. Additionally, a feature 

importance analysis was used to identify the cognitive features most influential to 

learning success—such as model revision frequency, reflection duration, and 

conceptual error count. The results of this computational analysis provided empirical 

validation for the proposed Cognitive Backpropagation Learning (CBL) model, 

demonstrating the dynamic parallelism between error-driven learning in artificial 

systems and metacognitive reflection in human cognition. 

Qualitative Thematic Analysis 

To explore the depth and meaning of students’ reflective learning experiences, 

qualitative data from digital reflection journals and semi-structured interviews were 

analyzed using thematic analysis. Furthermore, methodological triangulation was 

employed by integrating quantitative findings, computational simulations, and 

qualitative reflective data. This triangulated design strengthened the internal validity 

and ensured that the interpretations derived from the data were consistent, convergent, 

and credible across multiple lines of evidence. 

Research Ethics 

This study strictly adhered to institutional and international ethical standards for 

educational research. Prior to data collection, all participants received a comprehensive 

information sheet outlining the study’s objectives, procedures, potential benefits, and 

risks. Informed consent was obtained from each participant, ensuring voluntary 

participation and the right to withdraw at any time without academic consequences. 

To maintain confidentiality, all quantitative and qualitative data were anonymized 

before analysis, with personal identifiers such as names, student numbers, and digital 

logs replaced by coded references. In visual outputs generated by the deep learning 

model (e.g., loss curves, error heatmaps, and learning trajectories), no personal data 

were displayed, and all results were aggregated to represent group-level patterns rather 

than individual profiles. The study was conducted in full compliance with the Ethics 

Review Board of Universitas Negeri Makassar, following the principles of respect for 

persons, beneficence, and justice. Digital data were securely stored in encrypted 

repositories accessible only to authorized researchers. Upon completion of the 

intervention, participants were debriefed, provided with access to the study’s findings, 

and given feedback on their learning progress. This approach ensured that ethical 

compliance extended beyond procedural requirements, fostering a genuinely 

educative, reflective, and participatory research experience aligned with the 

developmental aims of the study. 
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RESULT AND DISCUSSION 

Result 

Improvement in Linear Programming Learning Outcomes 

The paired sample t-test analysis revealed a statistically significant improvement 

in students’ performance between the pretest and posttest following the deep learning 

visualization intervention. 

Table 2. Improvement in Linear Programming Learning Outcomes 
Statistic Pretest Posttest t p Description 

Mean 61.23 80.57 13.72 < 0.001 Significant 

Standard Deviation (SD) 8.45 7.62 
   

Sample Size (n) 60 60 
   

Mean Difference 19.34 – – – +31.6% Increase 

Source: Primary data from student pretest–posttest results (n = 60), 2025. 

The results indicate a substantial and statistically significant enhancement in 

students’ understanding of Linear Programming concepts after the integration of deep 

learning visualizations. The mean score increased from 61.23 to 80.57, representing a 

31.6% improvement in academic performance. Additionally, the reduction in standard 

deviation (from 8.45 to 7.62) suggests a more consistent level of achievement across 

participants, indicating that the intervention effectively supported learners with 

varying levels of prior ability. 

This improvement reflects not only an increase in procedural accuracy but also 

a deepened conceptual comprehension of mathematical modeling, particularly in 

linking constraints, objective functions, and feasible regions. These findings align with 

prior studies highlighting that AI-assisted visualization tools can enhance students’ 

conceptual reasoning and engagement in mathematical problem-solving by 

transforming abstract error-correction processes into visible, interpretable 

representations (Nazaretsky et al., 2022; Wang et al., 2024). 

 
Figure 1. Improvement of Student Learning Outcomes in the Linear Programming Course. 

Figure 1 illustrates a clear improvement in students’ performance between the 

pretest and posttest in the Linear Programming course. The average score increased 

from 61.23 to 80.57, representing a 31.6% improvement. This upward trend 

demonstrates the effectiveness of the deep learning visualization intervention in 

enhancing students’ conceptual understanding of mathematical modeling particularly 

in identifying relationships among constraints, objective functions, and feasible 
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regions. The consistency of posttest scores (indicated by reduced variability) further 

suggests that the intervention benefited students across different performance levels. 

Increase in Metacognitive Awareness 

Data from the Metacognitive Awareness Inventory (MAI) questionnaire revealed 

a significant improvement between pre- and post-intervention scores. The average 

total MAI score increased from 135.40 (SD = 12.18) to 159.85 (SD = 10.54). A paired 

sample t-test yielded t(59) = 11.94, p < 0.001, indicating a statistically significant 

enhancement in students’ metacognitive awareness. When analyzed by dimension (a) 

Knowledge of cognition increased by +14.3%, particularly in the declarative 

knowledge indicator (understanding of one’s own thinking strategies) and (b) 

regulation of cognition increased by +19.8%, especially in the monitoring and 

evaluation indicators—both closely related to reflective error analysis. Furthermore, 

the correlation between improvement in MAI scores and learning outcomes was 

significant (r = 0.62, p < 0.001), suggesting that the higher the students’ cognitive 

reflection, the greater their academic performance gains. 

 
Figure 2. Convergence Curve of the Deep Learning Model Loss Function. 

The figure shows significant increases in both dimensions of metacognition: 

knowledge of cognition (+14.3%) and regulation of cognition (+19.8%). Statistical 

analysis indicated a significant difference between pre- and post-intervention scores 

(t(59) = 11.94, p < .001), with a positive correlation between metacognitive gains and 

academic performance (r = .62, p < .001). 

Deep Learning Model Performance 

The constructed Multilayer Perceptron (MLP) model demonstrated stable 

convergence after 200 training epochs. The loss function value (Mean Squared Error, 

MSE) consistently decreased from 0.257 at epoch 1 to 0.031 at epoch 200, following 

a convergence curve that closely mirrored the gradual reduction of students’ 

conceptual errors over the learning period. The model achieved a validation accuracy 

of 89.4%, indicating strong predictive alignment with students’ actual problem-solving 

performance. Further inspection of feature gradients revealed that the model “learned 

most intensively” from two key types of student errors: (1) Constraint 

misrepresentation — errors in formulating mathematical constraints, and (2) 

Inaccurate identification of the optimal point within the feasible region. 
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These error categories exhibited the highest gradient magnitudes, suggesting that 

both the neural model and students underwent their most significant learning 

adjustments in response to these specific conceptual challenges. 

 
Figure 3. Relationship Between Student Learning Curve and Deep Learning Model 

Loss Function. 

The figure illustrates a parallel convergence pattern between students’ learning 

progression (solid line) and the deep learning model’s loss minimization (dashed line, 

inverted for comparison). The alignment between the two curves (DTW = 0.81, p < 

.01) indicates a structural similarity between human reflective learning and the 

backpropagation-based error correction process in the computational model. The 

shaded area highlights the temporal alignment between human and machine learning 

adaptation phases. 

Analysis of Error Correction Dynamics 

The visualization of the loss function curve from the deep learning (DL) model 

and the students’ learning curve revealed a parallel pattern of convergence. 

1. During Weeks 1 to 3, the model’s loss decreased sharply, corresponding to a 

significant increase in students’ practice scores (from 58% to 73%). 

2. After Week 4, both curves began to plateau, indicating a stabilization phase in 

understanding—reflecting cognitive consolidation in students and representational 

optimization in the model. 

Temporal pattern similarity analysis using Dynamic Time Warping (DTW) 

yielded an average alignment score of 0.81 (p < 0.01) between the DL model’s loss 

curve and the students’ learning performance curve. This finding reinforces the 

hypothesis that the error correction mechanism in deep learning structurally mirrors 

the dynamics of human metacognitive reflection. 

Furthermore, feature importance analysis revealed that the variables model 

revision frequency (0.34) and reflection duration (0.29) contributed most strongly to 

student success. These results suggest that iterative rethinking and deep reflection 

serve as the primary cognitive factors driving adaptive learning. 

Student Reflections 

Thematic analysis of 60 reflective journals and 10 semi-structured interviews 

revealed three overarching themes that capture the evolution of students’ 

metacognitive awareness during the deep learning visualization intervention: (1) Error 

Recognition, (2) Strategy Adjustment, and (3) Reflective Transformation. These 
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themes collectively illustrate a developmental trajectory from recognizing cognitive 

blind spots to achieving adaptive and self-corrective learning behaviors. 

1. Error Recognition 

In the early phase of the intervention, most students initially perceived mistakes 

merely as calculation errors or lapses in attention. However, exposure to visualizations 

of the loss function and error heatmaps enabled them to identify deeper conceptual 

inaccuracies in formulating mathematical models. Students began to differentiate 

between procedural errors (e.g., incorrect algebraic manipulation) and conceptual 

errors (e.g., misunderstanding the relationship between constraints and the objective 

function). Several students described this experience as a moment of cognitive 

revelation: 

“I used to think I was just careless. But after seeing the loss curve, I realized that 

my error came from how I structured the problem — not the arithmetic.” 

(Student PL-09, Reflection, Week 3) 

“Before the AI visualization, I couldn’t tell where my logic failed. But when I saw 

how the loss dropped after fixing my constraint, it felt like watching my own brain 

learning.” (Student PL-27, Interview) 

This pattern reflects the monitoring component of metacognition (Flavell, 1979), 

in which learners develop the capacity to detect and interpret discrepancies between 

their intended and actual performance. The visualization acted as a metacognitive cue, 

externalizing what is typically an internal process and enabling students to see their 

own thinking errors in real time. 

2. Strategy Adjustment 

As students’ awareness of their cognitive errors deepened, they began to revise 

their learning strategies in a more deliberate and systematic way. Many reported 

adopting reflective routines such as documenting mistakes, hypothesizing their causes, 

and testing revised solutions. This behavioral shift mirrors the regulation of cognition 

phase within the Self-Regulated Learning (SRL) model (Zimmerman, 2002), where 

learners actively control and adjust their learning strategies in response to feedback. 

“Seeing how the AI adjusted its weights after every error made me realize I should 

adjust my own methods too. Now, before solving, I plan my approach and double-

check the relationships between variables.”  (Student PL-13, Reflection, Week 5) 

“I used to repeat the same mistakes. Now, I review my error pattern and change 

my steps—just like the network changes its parameters after each iteration.” 

(Student PL-34, Interview) 

Students began employing self-regulatory strategies such as goal-setting, 

monitoring progress, and strategic revision. This reflects a metacognitive transition 

from passive error recognition to active problem reformulation, a hallmark of higher-

order mathematical reasoning (Kumah, 2023; Nurhajarurahmah, 2021).  The parallel 

with backpropagation becomes conceptually clear: in both humans and machines, 

errors serve as adaptive signals that guide the optimization of internal representations. 

3. Reflective Transformation 

By the later weeks of the intervention, students demonstrated a transformative 

change in their mindset toward learning and error. They began to articulate a sense of 
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ownership and acceptance toward their cognitive processes, reframing mistakes as 

opportunities for growth rather than indicators of failure. Visualizations of model 

convergence (loss minimization) provided a powerful metaphor for personal cognitive 

convergence, a visible reminder that learning is an iterative, self-correcting process. 

“I used to be afraid of being wrong, but now I see each mistake as a gradient 

pointing me toward better understanding.” 

(Student PL-17, Reflection, Week 6) 

“When I watched the loss curve flatten, I realized my thinking also started to 

stabilize. Errors aren’t failures—they’re feedback for improvement.” 

(Student PL-02, Reflection, Week 7) 

This stage aligns with Mezirow’s (1997) transformative learning theory, where 

critical reflection on prior assumptions leads to a fundamental reorientation of one’s 

meaning-making system. The reflective transformation observed here indicates that 

the visualization of AI learning dynamics can evoke a comparable internal process of 

cognitive restructuring in human learners. 

Synthesis Across Themes: Reflective–Computational Alignment 

Collectively, the three themes error recognition, strategy adjustment, and 

reflective transformation—illustrate a reflective–computational alignment between 

human cognition and the deep learning model’s backpropagation mechanism. Just as 

the network reduces loss through recursive weight adjustment, students refine their 

understanding through recursive reflection. 

Table 3. Cognitive Stage and Reflective Process Description 
Cognitive Stage Backpropagation 

Mechanism 

Reflective Process Description 

Error Recognition Output error computation Awareness of conceptual/procedural mistakes 

Strategy Adjustment Gradient propagation 

backward 

Strategic modification and cognitive 

reorganization 

Reflective 

Transformation 

Weight update and 

convergence 

Internalization of new understanding and 

reflective stability 

This alignment underscores the central premise of the Cognitive 

Backpropagation Learning (CBL) framework proposed in this study — that the 

principles of error-driven learning in machines can serve as an interpretive model for 

human metacognitive development. The integration of deep learning visualization not 

only made reflection visible but also transformed it into an interactive, data-informed 

process of cognitive evolution. 

DISCUSSION 

Relationship Between Backpropagation and Metacognitive Reflection 

The findings of this study demonstrate that the error-driven learning mechanism 

in deep learning (DL) exhibits both structural and functional equivalence to human 

metacognitive reflection. In DL, the error feedback signal is propagated backward 

through the network to adjust the connection weights, enabling the system to update 

its internal representations toward the desired target. This process mirrors the 

metacognitive mechanism in human learning, where individuals analyze their 
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reasoning outcomes, identify errors, and modify cognitive strategies to improve 

accuracy and efficiency. 

Conceptually, the present study validates the proposed Cognitive 

Backpropagation Learning (CBL) model, which interprets backpropagation not merely 

as a mathematical optimization algorithm, but as a cognitive metaphor for human 

reflection. In this framework, error feedback serves as a bidirectional adaptive signal: 

within artificial systems, it modifies network parameters, whereas within human 

cognition, it updates thinking strategies and activates reflective awareness. Thus, the 

computational system operates as an external projection of human internal reflection, 

aligning with the notion of computational cognition proposed by Lake et al. (2017) in 

Nature Human Behaviour. 

Empirical evidence from this study further supports this theoretical analogy. The 

Dynamic Time Warping (DTW) analysis yielded a similarity index of 0.81 (p < 0.01) 

between the DL model’s loss function curve and the students’ learning curve, 

indicating a high degree of temporal alignment between machine and human error 

correction processes. This parallelism reinforces the classic view of (Rumelhart et al., 

1986) that backpropagation fundamentally emulates neurocognitive learning 

principles in the human brain, where error signals drive adaptive learning and synaptic 

modification. In other words, when students reflect on and correct their mathematical 

reasoning errors, they are cognitively enacting the same principle of iterative error 

correction that governs deep learning systems. 

Integration of Deep Learning Visualization in Mathematics Learning 

The use of deep learning, based error visualization was found to not only 

improve students’ conceptual understanding of Linear Programming but also to 

consciously activate their metacognitive reflection processes. Through visual 

representations such as loss curves and error heatmaps, students could observe how 

the model’s errors decreased across iterations, enabling them to analogize and track 

the evolution of their own learning errors. This process effectively externalized 

cognitive monitoring, allowing students to “see” learning as a dynamic, self-correcting 

system rather than a static outcome. 

This finding aligns with recent advancements in Artificial Intelligence in 

Education (AIED) and Explainable Artificial Intelligence (XAI), which emphasize the 

role of model interpretability in supporting learner reflection. XAI functions as a 

metacognitive scaffold a mediating tool that helps learners understand the interplay 

between input (learning strategy), process (error correction), and output (learning 

performance). As Holmes described, this visualization serves as a “digital learning 

mirror”, allowing students to project, analyze, and refine their thinking patterns 

through interactive and pedagogically meaningful representations. 

The integration of DL visualization also facilitated a crucial cognitive shift 

among students—from result-oriented to process-oriented learning. In mathematics 

education, this transition is particularly vital because mastery is not limited to 

obtaining correct answers but involves understanding why and how errors occur. The 

loss function visualization, therefore, operates as a conceptual model for the principle 

of “learning through error,” embodying the recursive, reflective reasoning essential to 

higher-order mathematical thinking. 

Collectively, these findings highlight the pedagogical potential of integrating AI-

based interpretive visualization within mathematics learning environments. By 
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aligning computational modeling with cognitive reflection, instructors can design 

more transparent and self-regulated learning experiences, where both students and 

systems learn from errors in a shared adaptive cycle. 

Implications for Mathematics Instruction 

The integration of deep learning visualization within mathematics instruction 

presents several key pedagogical implications. First, the findings demonstrate that 

error-driven visualization can function as an effective metacognitive feedback 

mechanism, helping students to monitor their reasoning and detect conceptual 

inconsistencies more efficiently. Traditional mathematics instruction often emphasizes 

procedural correctness, yet lacks mechanisms to make the thinking process visible. By 

embedding AI-generated visual analytics—such as loss curves, error maps, and 

feature importance displays—educators can transform invisible cognitive processes 

into tangible reflective artifacts that promote deeper understanding and adaptive 

reasoning. 

Second, the Cognitive Backpropagation Learning (CBL) framework provides a 

conceptual bridge between algorithmic learning and reflective pedagogy. Within this 

model, instructional design can incorporate iterative feedback loops similar to 

backpropagation—where students repeatedly test, evaluate, and refine their problem-

solving strategies based on structured feedback. This recursive approach supports 

formative assessment, enabling educators to trace learning progress not merely through 

scores but through patterns of conceptual improvement. 

Third, the use of DL visualization tools can foster personalized learning 

pathways. By analyzing students’ learning curves and cognitive profiles, AI models 

can adapt the level of task complexity or recommend targeted reflection prompts based 

on each student’s error pattern. This personalization aligns with current directions in 

AI-based adaptive learning (Pacheco et al., 2025; Wang et al., 2024), where data-

driven insights are used to design reflective scaffolds that accommodate individual 

learning differences. 

Finally, from a pedagogical standpoint, the integration of AI visualization into 

mathematics education repositions errors as pedagogical resources rather than 

obstacles. When students visualize the iterative nature of correction—both in machines 

and in their own cognition—they develop a mindset oriented toward productive 

struggle, persistence, and continuous self-improvement. Such reflective dispositions 

are essential for nurturing 21st-century mathematical literacy, where success depends 

on flexibility, adaptability, and critical thinking rather than rote accuracy. 

Relevance to Cognitive and Self-Regulated Learning Theories 

The results of this study contribute to extending cognitive learning theory and 

self-regulated learning (SRL) models by introducing a computationally grounded 

analogy that explains how reflection and error correction operate dynamically. Within 

the SRL framework (Stanton et al., 2021; Zimmerman, 2002) learners progress 

through three iterative stages: forethought, performance control, and self-reflection. 

The present findings suggest that these stages parallel the computational phases of 

deep learning: the feedforward pass (planning and execution), the error computation 

(monitoring performance), and the backpropagation (reflective adjustment and weight 

updating). 
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This correspondence provides a novel theoretical link between artificial and 

human learning systems—one that emphasizes error as a learning catalyst. Just as 

backpropagation allows neural networks to gradually approximate optimal solutions 

through iterative correction, metacognitive reflection enables human learners to 

progressively refine their conceptual understanding through cycles of self-assessment 

and adjustment. The DTW similarity score (0.81, p < .01) between the model’s loss 

curve and the students’ learning trajectory empirically supports this structural 

alignment. 

From a neurocognitive perspective, this parallelism echoes evidence that error-

related negativity (ERN) signals in the human brain function similarly to error 

gradients in artificial networks—serving as feedback that triggers cognitive adaptation 

(Holroyd & Coles, 2002; Luo, 2024). The convergence of findings across 

computational, psychological, and pedagogical domains suggests that reflective 

learning may be understood as a bio-computational process—an adaptive system 

governed by recursive feedback loops. 

Consequently, the Cognitive Backpropagation Learning (CBL) framework 

proposed here extends SRL theory by offering a mechanistic explanation of how 

reflection occurs: through continuous adjustment of internal cognitive parameters in 

response to detected errors. This model underscores the role of error awareness, self-

correction, and reflective monitoring as essential cognitive drivers of deep learning 

not only for machines but also for humans. In addition, the integration of deep learning 

visualization within mathematics learning environments not only advances 

instructional design but also provides theoretical grounding for understanding 

reflection as an algorithmic, adaptive, and measurable cognitive process. The 

following section concludes the study by summarizing its contributions, limitations, 

and directions for future research. 

CONCLUSION 

This study demonstrates that integrating deep learning visualization grounded in 

the principle of backpropagation can significantly enhance both mathematical learning 

outcomes and metacognitive awareness among university students. By bridging 

computational modeling with cognitive reflection, the proposed Cognitive 

Backpropagation Learning (CBL) framework establishes a meaningful analogy 

between how artificial networks and human learners adapt through feedback and error 

correction. Quantitative results revealed substantial improvements in students’ 

performance and metacognitive regulation, while the computational analysis showed 

a strong temporal alignment (DTW = 0.81, p < .01) between the model’s loss reduction 

and students’ learning progress. Qualitative reflections further confirmed that 

visualizing learning errors fostered deeper self-awareness, strategy adjustment, and 

reflective transformation. Collectively, these findings affirm that AI-based 

visualization is not merely a technological tool but a pedagogical catalyst for 

cultivating reflective, adaptive, and self-regulated mathematical thinkers. The study 

contributes to the broader discourse on AI in education by offering an interpretable, 

cognitively aligned approach that transforms error into insight, positioning reflection 

as both a human and algorithmic process at the heart of meaningful learning. 
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